1. López-Otín C, Blasco MA, Partridge L, et al.: The hallmarks of aging. Cell. 2013; 153(6): 1194-217.
2. Engelfriet PM, Jansen EH, Picavet HS, et al.: Biochemical markers of aging for longitudinal studies in humans. Epidemiol Rev. 2013; 35(1): 132–51.
3. Johnson TE: Recent results: biomarkers of aging. Exp Gerontol. 2006; 41(12): 1243–6.
4. Aubert G, Lansdorp PM: Telomeres and aging. Physiol Rev. 2008; 88(2): 557–79.
5. Kimura M, Hjelmborg JV, Gardner JP, et al.: Telomere length and mortality:a study of leukocytes in elderly Danish twins. Am J Epidemiol. 2008; 167(7): 799–806.
6. Rehkopf DH, Needham BL, Lin J, et al.: Leukocyte Telomere Length in Relation to 17 Biomarkers of Cardiovascular Disease Risk: A Cross-Sectional Study of US Adults. PLoS Med. 2016; 13(11): e1002188.
7. Hammadah M, Al Mheid I, Wilmot K, et al.: Telomere Shortening, Regenerative Capacity, and Cardiovascular Outcomes. Circ Res. 2017; 120(7): 1130–8.
8. Blackburn EH, Epel ES, Lin J: Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science. 2015; 350(6265): 1193–8.
9. Eitan E, Hutchison ER, Mattson MP: Telomere shortening in neurological disorders: an abundance of unanswered questions. Trends Neurosci. 2014; 37(5): 256–63.
10. Sedelnikova OA, Horikawa I, Zimonjic DB, et al.: Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Nat Cell Biol. 2004; 6(2): 168–70.
11. Dollé ME, Giese H, Hopkins CL, et al.: Rapid accumulation of genome rearrangements in liver but not in brain of old mice. Nat Genet. 1997; 17(4): 431–4.
12. White RR, Milholland B, de Bruin A, et al.: Controlled induction of DNA double-strand breaks in the mouse liver induces features of tissue ageing. Nat Commun. 2015; 6: 6790.
13. Wang C, Jurk D, Maddick M, et al.: DNA damage response and cellular senescence in tissues of aging mice. Aging Cell. 2009; 8(3): 311–23.
14. Rübe CE, Fricke A, Widmann TA, et al.: Accumulation of DNA damage in hematopoietic stem and progenitor cells during human aging. PLoS One. 2011; 6(3): e17487.
15. Kuo LJ, Yang LX: Gamma-H2AX - a novel biomarker for DNA double-strand breaks. In Vivo. 2008; 22(3): 305–9.
16. Song Z, von Figura G, Liu Y, et al.: Lifestyle impacts on the aging-associated expression of biomarkers of DNA damage and telomere dysfunction in human blood. Aging Cell. 2010; 9(4): 607–15.
17. Chevanne M, Caldini R, Tombaccini D, et al.: Comparative levels of DNA breaks and sensitivity to oxidative stress in aged and senescent human fibroblasts: a distinctive pattern for centenarians. Biogerontology. 2003; 4(2): 97–104.
18. Day K, Waite LL, Thalacker-Mercer A, et al.: Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. Genome Biol. 2013; 14(9): R102.
19. Horvath S, Zhang Y, Langfelder P, et al.: Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol. 2012; 13(10): R97.
20. Horvath S, Gurven M, Levine ME, et al.: An epigenetic clock analysis of race/ ethnicity, sex, and coronary heart disease. Genome Biol. 2016; 17(1): 171.
21. Weidner CI, Lin Q, Koch CM, et al.: Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol. 2014; 15(2): R24.
22. Bacos K, Gillberg L, Volkov P, et al.: Blood-based biomarkers of age- associated epigenetic changes in human islets associate with insulin secretion and diabetes. Nat Commun. 2016; 7: 11089.
23. Sen P, Shah PP, Nativio R, et al.: Epigenetic Mechanisms of Longevity and Aging. Cell. 2016; 166(4): 822–39.
24. Lu Y, Biancotto A, Cheung F, et al.: Systematic Analysis of Cell-to-Cell Expression Variation of T Lymphocytes in a Human Cohort Identifies Aging and Genetic Associations. Immunity. 2016; 45(5): 1162–75.
25. Peters MJ, Joehanes R, Pilling LC, et al.: The transcriptional landscape of age in human peripheral blood. Nat Commun. 2015; 6: 8570.
26. Dumortier O, Hinault C, Van Obberghen E: MicroRNAs and metabolism crosstalk in energy homeostasis. Cell Metab. 2013; 18(3): 312–24.
27. Dhahbi JM: Circulating small noncoding RNAs as biomarkers of aging. Ageing Res Rev. 2014; 17: 86–98.
28. Li X, Khanna A, Li N, et al.: Circulatory miR34a as an RNAbased, noninvasive biomarker for brain aging. Aging (Albany NY). 2011; 3(10): 985–1002.
29. 29. Pang J, Xiong H, Yang H, et al.: Circulating miR-34a levels correlate with age-related hearing loss in mice and humans. Exp Gerontol. 2016; 76: 58–67.
30. Olivieri F, Spazzafumo L, Santini G, et al.: Age-related differences in the expression of circulating microRNAs: miR-21 as a new circulating marker of inflammaging. Mech Ageing Dev. 2012; 133(11–12): 675–85.
31. Noren Hooten N, Fitzpatrick M, Wood WH 3rd, et al.: Age-related changes in microRNA levels in serum. Aging (Albany NY). 2013; 5(10): 725–40.
32. Olivieri F, Bonafè M, Spazzafumo L, et al.: Age- and glycemia-related miR-126-3p levels in plasma and endothelial cells. Aging (Albany NY). 2014; 6(9): 771–87. 、
33. Pincus Z, Smith-Vikos T, Slack FJ: MicroRNA predictors of longevity in Caenorhabditis elegans. PLoS Genet. 2011; 7(9): e1002306.
34. Fatica A, Bozzoni I: Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014; 15(1): 7–21.
35. Grammatikakis I, Panda AC, Abdelmohsen K, et al.: Long noncoding RNAs(lncRNAs) and the molecular hallmarks of aging. Aging (Albany NY). 2014; 6(12): 992–1009.
36. Kour S, Rath PC: Long noncoding RNAs in aging and age-related diseases. Ageing Res Rev. 2016; 26: 1–21.
37. Quinn JJ, Chang HY: Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016; 17(1): 47–62.
38. Montes M, Nielsen MM, Maglieri G, et al.: The lncRNA MIR31HG regulates p16INK4A expression to modulate senescence. Nat Commun. 2015; 6: 6967.
39. Chen YN, Cai MY, Xu S, et al.: Identification of the lncRNA, AK156230, asa novel regulator of cellular senescence in mouse embryonic fibroblasts. Oncotarget. 2016; 7(33): 52673–84.
40. Boon RA, Hofmann P, Michalik KM, et al.: Long Noncoding RNA Meg3 Controls Endothelial Cell Aging and Function: Implications for Regenerative Angiogenesis. J Am Coll Cardiol. 2016; 68(23): 2589–91.
41. Zhu S, Li W, Liu J, et al.: Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Nat Biotechnol. 2016; 34(12): 1279–86.
42. Fontana L, Partridge L, Longo VD: Extending healthy life span--from yeast to humans. Science. 2010; 328(5976): 321–6.
43. Schumacher B, van der Pluijm I, Moorhouse MJ, et al.: Delayed and accelerated aging share common longevity assurance mechanisms. PLoS Genet. 2008; 4(8): e1000161.
44. Corpas E, Harman SM, Blackman MR: Human growth hormone and human aging. Endocr Rev. 1993; 14(1): 20–39.
45. Crimmins E, Vasunilashorn S, Kim JK, et al.: Biomarkers related to aging in human populations. Adv Clin Chem. 2008; 46: 161–216.
46. Johnson SC, Rabinovitch PS, Kaeberlein M: mTOR is a key modulator of ageing and age-related disease. Nature. 2013; 493(7432): 338–45.
47. Bajwa P, Nagendra PB, Nielsen S, et al.: Age related increase in mTOR activity contributes to the pathological changes in ovarian surface epithelium. Oncotarget. 2016; 7(15): 19214–27.
48. Dieterlen MT, Bittner HB, Klein S, et al.: Assay validation of phosphorylated S6 ribosomal protein for a pharmacodynamic monitoring of mTOR-inhibitors in peripheral human blood. Cytometry B Clin Cytom. 2012; 82(3): 151–7.
49. Martin-Montalvo A, Mercken EM, Mitchell SJ, et al.: Metformin improves healthspan and lifespan in mice. Nat Commun. 2013; 4: 2192.
50. Gordon SE, Lake JA, Westerkamp CM, et al.: Does AMP-activated protein kinase negatively mediate aged fast-twitch skeletal muscle mass? Exerc Sport Sci Rev. 2008; 36(4): 179–86.
51. Massudi H, Grant R, Braidy N, et al.: Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS One. 2012; 7(7): e42357.
52. Dang W: The controversial world of sirtuins. Drug Discov Today Technol. 2014; 12: e9–e17.
53. Imai S, Guarente L: NAD+ and sirtuins in aging and disease. Trends Cell Biol. 2014; 24(8): 464–71.
54. Kim KS, Park HK, Lee JW, et al.: Investigate correlation between mechanical property and aging biomarker in passaged human dermal fibroblasts. Microsc Res Tech. 2015; 78(4): 277–82.
55. Zhang J, Fang L, Lu Z, et al.: Are sirtuins markers of ovarian aging? Gene. 2016; 575(2 Pt 3): 680–6.
56. Yudoh K, Karasawa R, Ishikawa J: Age-related Decrease of Sirtuin 2 Protein in Human Peripheral Blood Mononuclear Cells. Curr Aging Sci. 2015; 8(3): 256–8.
57. Gorisse L, Pietrement C, Vuiblet V, et al.: Protein carbamylation is a hallmark of aging. Proc Natl Acad Sci U S A. 2016; 113(5): 1191–6.
58. Verbrugge FH, Tang WH, Hazen SL: Protein carbamylation and cardiovascular disease. Kidney Int. 2015; 88(3): 474–8.
59. Semba RD, Nicklett EJ, Ferrucci L: Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol A Biol Sci Med Sci. 2010; 65(9): 963–75.
60. Thorpe SR, Baynes JW: Role of the Maillard reaction in diabetes mellitus and diseases of aging. Drugs Aging. 1996; 9(2): 69–77.
61. Hanssen NM, Wouters K, Huijberts MS, et al.: Higher levels of advanced glycation endproducts in human carotid atherosclerotic plaques are associated with a rupture-prone phenotype. Eur Heart J. 2014; 35(17): 1137–46.
62. Sayej WN, Knight Iii PR, Guo WA, et al.: Advanced Glycation End Products Induce Obesity and Hepatosteatosis in CD-1 Wild-Type Mice. Biomed Res Int. 2016; 2016: 7867852.
63. Brownlee M: Advanced protein glycosylation in diabetes and aging. Annu Rev Med. 1995; 46: 223–34.
64. Nagai R, Shirakawa J, Ohno R, et al.: Antibody-based detection of advanced glycation end-products: promises vs. limitations. Glycoconj J. 2016; 33(4): 545–52.
65. Dall'Olio F, Vanhooren V, Chen CC, et al.: N-glycomic biomarkers of biological aging and longevity: a link with inflammaging. Ageing Res Rev. 2013; 12(2): 685–98.
66. Glei DA, Goldman N, Lin YH, et al.: Age-Related Changes in Biomarkers: Longitudinal Data from a Population-Based Sample. Res Aging. 2011; 33(3): 312–26.
67. Montoliu I, Scherer M, Beguelin F, et al.: Serum profiling of healthy aging identifies phospho- and sphingolipid species as markers of human longevity. Aging (Albany NY). 2014; 6(1): 9–25.
68. Sanchis-Gomar F, Pareja-Galeano H, Santos-Lozano A, et al.: A preliminary candidate approach identifies the combination of chemerin, fetuin-A, and fibroblast growth factors 19 and 21 as a potential biomarker panel of successful aging. Age (Dordr). 2015; 37(3): 9776.
69. Syslová K, Böhmová A, Mikoška M, et al.: Multimarker screening of oxidative stress in aging. Oxid Med Cell Longev. 2014; 2014: 562860.
70. Shen EZ, Song CQ, Lin Y, et al.: Mitoflash frequency in early adulthood predicts lifespan in Caenorhabditis elegans. Nature. 2014; 508(7494): 128–32.
71. Tyrrell DJ, Bharadwaj MS, Jorgensen MJ, et al.: Blood cell respirometry is associated with skeletal and cardiac muscle bioenergetics: Implications for a minimally invasive biomarker of mitochondrial health. Redox Biol. 2016; 10: 65–77.
72. Tyrrell DJ, Bharadwaj MS, Van Horn CG, et al.: Respirometric Profiling of Muscle Mitochondria and Blood Cells Are Associated With Differences in Gait Speed Among Community-Dwelling Older Adults. J Gerontol A Biol Sci Med Sci. 2015; 70(11): 1394–9.
73. Wilkins HM, Koppel SJ, Weidling IW, et al.: Extracellular Mitochondria and Mitochondrial Components Act as Damage-Associated Molecular Pattern Molecules in the Mouse Brain. J Neuroimmune Pharmacol. 2016; 11(4): 622–8.
74. Burton DG: Cellular senescence, ageing and disease. Age (Dordr). 2009; 31(1): 1–9.
75. Campisi J: Aging, cellular senescence, and cancer. Annu Rev Physiol. 2013; 75: 685–705.
76. Tacutu R, Budovsky A, Yanai H, et al.: Molecular links between cellular senescence, longevity and age-related diseases - a systems biology perspective. Aging (Albany NY). 2011; 3(12): 1178–91.
77. Sharpless NE, Sherr CJ: Forging a signature of in vivo senescence. Nat Rev Cancer. 2015; 15(7): 397–408.
78. Matjusaitis M, Chin G, Sarnoski EA, et al.: Biomarkers to identify and isolate senescent cells. Ageing Res Rev. 2016; 29: 1–12.
79. Liu Y, Sanoff HK, Cho H, et al.: Expression of p16INK4a in peripheral blood T-cells is a biomarker of human aging. Aging Cell. 2009; 8(4): 439–48. Vandenberk B, Brouwers B, Hatse S, et al.: p16INK4a: A central player in cellular senescence and a promising aging biomarker in elderly cancer patients.J Geriatr Oncol. 2011; 2(4): 259–69.
80. Kurz DJ, Decary S, Hong Y, et al.: Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci. 2000; 113(Pt 20): 3613–22.
79. Yang NC, Hu ML: The limitations and validities of senescence associated-beta- galactosidase activity as an aging marker for human foreskin fibroblast Hs68 cells. Exp Gerontol. 2005; 40(10): 813–9.
80. Schadendorf D, Möller A, Algermissen B, et al.: IL-8 produced by human malignant melanoma cells in vitro is an essential autocrine growth factor. J Immunol. 1993; 151(5): 2667–75.
81. Wajapeyee N, Serra RW, Zhu X, et al.: Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell. 2008; 132(3): 363–74.
82. Tchkonia T, Zhu Y, van Deursen J, et al.: Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest. 2013; 123(3): 966–72.
83. Coppé JP, Desprez PY, Krtolica A, et al.: The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010; 5: 99–118.
84. Bianchi ME: DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007; 81(1): 1–5.
85. Huang J, Xie Y, Sun X, et al.: DAMPs, ageing, and cancer: The ‘DAMP Hypothesis’. Ageing Res Rev. 2015; 24(Pt A): 3–16.
86. Wagner KH, Cameron-Smith D, Wessner B, et al.: Biomarkers of Aging: From Function to Molecular Biology. Nutrients. 2016; 8(6): pii: E338.
87. Belsky DW, Moffitt TE, Cohen AA, et al.: Telomere, epigenetic clock, and biomarker-composite quantifications of biological aging: Do they measure the same thing? bioRxiv. 2016.
88. Chen W, Qian W, Wu G, et al.: Three-dimensional human facial morphologies as robust aging markers. Cell Res. 2015; 25(5): 574–87.
89. Chen W, Xia X, Huang Y, et al.: Bioimaging for quantitative phenotype analysis. Methods. 2016; 102: 20–5.
90. Horvath S: DNA methylation age of human tissues and cell types. Genome Biol. 2013; 14(10): R115.
91. Cohen AA, Milot E, Yong J, et al.: A novel statistical approach shows evidence for multi-system physiological dysregulation during aging. Mech Ageing Dev. 2013; 134(3–4): 110–7.
92. Cohen AA, Li Q, Milot E, et al.: Statistical distance as a measure of physiological dysregulation is largely robust to variation in its biomarker composition. PLoS One. 2015; 10(4): e0122541.
93. De Maesschalck R, Jouan-Rimbaud D, Massart DL: The Mahalanobis distance. Chemometr Intell Lab Syst. 2000; 50(1): 1–18.
94. Partridge L, Prowse N, and Pignatelli P. Another set of responses and correlated responses to selection on age at reproduction in Drosophila melanogaster. Proc R Soc Lond B Biol Sci 266: 255–261, 1999.
95. Rose M and Charlesworth B. A test of evolutionary theories of senescence. Nature 287: 141–142, 1980.
96. Austad SN. Retarded senescence in an insular population of opossums. J Zool 229: 695–708, 1993.
97. Loison A, Festa-Bianchet M, Gaillard JM, Jorgenson JT, and Jullien JM. Age-specific survival in five populations of ungulates: evidence of senescence. Ecology 80: 2539–2554, 1999.
98. Arantes-Oliveira N, Apfeld J, Dillin A, and Kenyon C. Regulation of life-span by germ-line stem cells in Caenorhabdi- tis elegans. Science 295: 502–505, 2002.
99. ArkingR,BuckS,NovoseltevVN,HwangboDS,andLane M. Genomic plasticity, energy allocations, and the extended longevity phenotypes of Drosophila. Ageing Res Rev 1: 209–228, 2002.
100. Arking R, Burde V, Graves K, Hari R, Feldman E, Zeevi A, Soliman S, Saraiya A, Buck S, Vettraino J, Sathrasala K, Wehr N, and Levine RL. Forward and reverse selection for longevity in Drosophila is characterized by alteration of antiox- idant gene expression and oxidative damage patterns. Exp Gerontol 35: 167–185, 2000.
101. Austad SN. Retarded senescence in an insular population of opossums. J Zool 229: 695–708, 1993.
102. Babar P, Adamson C, Walker GA, Walker DW, and Lith- gow GJ. P13-kinase inhibition induces dauer formation, ther- motolerance and longevity in C. elegans. Neurobiol Aging 20: 513–519, 1999.
103. Beausejour CM, Krtolica A, Galimi F, Nerita M, Lowe S, Yaswen Y, and Campisi J. Reversal of human cellular senes- cence: roles of the p53 and p16 pathways. EMBO J. In press.
104. Beckman KB and Ames BN. The free radical theory of aging matures. Physiol Rev 78: 547–581, 1998.
105. Bernard C. Lec ̧ons sur les phe ́nome`nes de la vie communs aux animaux et aux ve ́ge ́taux. Paris: Bailliere, 1878–1879.
106. Blackburn EH. Telomere states and cell fates. Nature 408: 53–56, 2000.
107. Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA, and Greider CW. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91: 25–34, 1997.
108. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, and Wright WE. Extension of life-span by introduction of telomer- ase into normal human cells. Science 279: 349–352, 1998.
109. Campisi J. Cellular senescence and cell death. In: Physiolog- ical Basis of Aging and Geriatrics (3rd ed.), edited by Timiras PS. Boca Raton, FL: CRC, 2003, p. 47–59.
110. Cannon WB. The Wisdom of the Body. New York: Norton, 1932.
111. Caratero A, Courtade M, Bonnet L, Planel H, and Car- atero C. Effect of a continuous gamma irradiation at a very low dose on the life span of mice. Gerontology 44: 272–276, 1998.
112. Carey JR. Theories of life span and aging. In: Physiological Basis of Aging and Geriatrics (3rd ed.), edited by Timiras PS. Boca Raton, FL: CRC, 2003, p. 85–95.
113. Chang E and Harley CB. Telomere length and replicative aging in human vascular tissues. Proc Natl Acad Sci USA 92: 11190–11194, 1995.
114. Chin L, Artandi SE, Shen Q, Tam A, Lee SL, Gottlieb GJ, Greider CW, and DePinho RA. p53 Deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97: 527–538, 1999.
115. Collins K. Mammalian telomeres and telomerase. Curr Opin Cell Biol 12: 378–383, 2000.
116. Collins K and Wong JMY. Telomere maintenance and dis- ease. Lancet, Published online May 13, 2003. http://www. thelancet.com/journal/vol361/iss9370/abs/llan.361.9370.early_ online_publication.25751.1.
117. Daynes RA and Araneo BA. Prevention and reversal of some age-associated changes in immunologic responses by supple- mental dehydroepiandrosterone sulfate therapy. Aging: Immu- nology, and Infectious Disease 3: 135–153, 1992.
118. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92: 9363– 9367, 1995.
119. Dirac AM and Bernards R. Reversal of senescence in mouse fibroblasts through lentiviral suppression of p53. J Biol Chem 278: 11731–11734, 2003.
120. Dokal I. Dyskeratosis congenita: recent advances and future directions. J Pediatr Hematol Oncol 21: 344–350, 1999.
121. Donehower LA. Does p53 affect organismal aging? J Cell Physiol 192: 23–33, 2002.
122. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, and Bradley A. Mice defi- cient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356: 215–221, 1992.
123. Drachtman RA and Alter BP. Dyskeratosis congenita. Der- matol Clin 13: 33–39, 1995.
124. Fenton M, Barker S, Kurz DJ, and Erusalimsky JD. Cel- lular senescence after single and repeated balloon catheter denudations of rabbit carotid arteries. Arterioscler Thromb Vasc Biol 21: 220–226, 2001.
125. Finch CE. Longevity, Senescence and the Genome. Chicago, IL: Univ. of Chicago Press, 1990.
126. Finch CE. The regulation of physiological changes during mammalian aging. Q Rev Biol 51: 49–83, 1976.
127. Finkel T and Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 408: 239–247, 2000.
128. Franceschi C, Monti D, Sansoni P, and Cossarizza A. The immunology of exceptional individuals: the lesson of centenar- ians. Immunol Today 16: 12–16, 1995.
129. Franceschi C, Valensin S, Bonafe M, Paolisso G, Yashin AI, Monti D, and De Benedictis G. The network and the remodeling theories of aging: historical background and new perspectives. Exp Gerontol 35: 879–896, 2000.
130. George AJ and Ritter MA. Thymic involution with ageing: obsolescence or good housekeeping? Immunol Today 17: 267– 272, 1996.
131. Ginaldi L and Sternberg H. The immune system. In: Physi- ological Basis of Aging and Geriatrics (3rd ed.), edited by Timiras PS. Boca Raton, FL: CRC, 2003.
132. Haldane JBS. New Paths in Genetics. London: Allen & Unwin, 1941.
133. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 2: 298–300, 1957.
134. Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37: 614–636, 1965.
135. Huang TT, Carlson EJ, Gillespie AM, Shi Y, and Epstein CJ. Ubiquitous overexpression of CuZn superoxide dismutase does not extend life span in mice. J Gerontol A Biol Sci Med Sci 55: B5–B9, 2000.
136. Kanungo MS. A model for ageing. J Theor Biol 53: 253–261, 1975.
137. Kawano T, Ito Y, Ishiguro M, Takuwa K, Nakajima T, and Kimura Y. Molecular cloning and characterization of a new insulin/IGF-like peptide of the nematode Caenorhabditis el- egans. Biochem Biophys Res Commun 273: 431–436, 2000.
138. Keller L and Genoud M. Extraordinary lifespans in ants: a test of evolutionary theories of ageing. Nature 389: 958–960, 1997.
139. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, and Shay JW. Specific association of human telomerase activity with immortal cells and cancer. Science 266: 2011–2015, 1994.
140. Kirkwood TB. New science for an old problem. Trends Genet 18: 441–442, 2002.
141. Kowald A and Kirkwood TB. A network theory of ageing: the interactions of defective mitochondria, aberrant proteins, free radicals and scavengers in the ageing process. Mutat Res 316: 209–236, 1996.
142. Krtolica A and Campisi J. Cancer and aging: a model for the cancer promoting effects of the aging stroma. Int J Biochem Cell Biol 34: 1401–1414, 2002.
143. Weindruch R and Walford RL. The Retardation of Aging and Diseases by Dietary Restriction. Springfield, IL: Thomas, 1998.
144. Wilmoth JR. Human longevity in historical perspective. In: Physiological Basis of Aging and Geriatrics (3rd ed.), edited by Timiras PS. Boca Raton, FL: CRC, 2003, p. 11–24.
145. Wright WE, Piatyszek MA, Rainey WE, Byrd W, and Shay JW. Telomerase activity in human germline and embryonic tissues and cells. Dev Genet 18: 173–179, 1996.
146. Wright WE and Shay JW. Historical claims and current interpretations of replicative aging. Nat Biotechnol 20: 682– 688, 2002.
Zou S, Meadows S, Sharp L, Jan LY, and Jan YN. Ge- nome-wide study of aging and oxidative stress response in Drosophila melanogaster. Proc Natl Acad Sci USA 97: 13726 – 13731, 2000.
共有 0 条评论